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Estimating the Virial Coefficients of 
Small Polar Molecules 

L. A. W e b e r  ~ 
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We adapt existing models for estimating the second and third virial coefficients 
of small molecules to the halogenated methanes and ethanes. We compare the 
results with the abundant new, high-quality P V T  data resulting from the search 
for alternative refrigerants. The present model provides an accurate method for 
calculating densities, and therefore it should provide reliable thermodynamic 
properties and fugacity coefficients. We give equations and parameters useful for 
estimating the properties of pure refrigerants and their mixtures when no P V T  
data are available. 
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I. I N T R O D U C T I O N  

A virial equa t ion  of state provides  the most  sat isfactory way to represent  
accurate  gas-phase density da ta  over a wide range of temperatures .  The 
virial representa t ion  is especially well suited for expressing the nonideal  
behavior  of mixtures because the mixing rules are simple and they have a 
theoret ical  foundat ion.  In addi t ion ,  the virial coefficients al low the con- 
venient calculat ion of componen t  fugacities for the analysis  and corre la t ion  
of vapo r - l i qu id  equi l ibr ium da ta  in b inary  and mul t i componen t  mixtures.  
When virial coefficients are combined  with the ideal-gas heat capaci ty ,  all 
of the equi l ibr ium gas-phase the rmodynamic  proper t ies  can be calculated.  
With a reliable vapor-pressure  curve, virial coefficients can also be used to 
calculate several of the the rmodynamic  functions of the sa tura ted  liquid. At 
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low reduced temperatures they can be very useful when included in multi- 
property fits of complex, wide-range equations of state. In such fits, they 
constrain the equations at low temperatures in the gas phase. 

Measurement of the virial coefficients at low reduced temperatures 
presents a number of experimental difficulties, particularly for those mole- 
cules of industrial interest which are often polar or associating. Thus an 
attractive alternative has been the development of wide-range correlations 
or models for the extrapolation or prediction of virial coefficients where 
data are sparse or nonexistent. Such models can also point out cases where 
the data may be of questionable quality. These models have been used 
extensively for the second virial coefficient; much less work has been done 
with the third and higher virial coefficients. 

The second virial coefficient can be calculated directly from a model 
for the intermolecular potential, and vice versa. This technique has been 
used many times with impressive results: two references of special interest 
here are Saxena and Joshi [1]  and Schramm and Weber [2]. The draw- 
back for the present purpose is that some data are needed for each 
molecule to determine the intermolecular potential parameters. Here, we 
have chosen to develop further one of the empirical wide-range correlations 
available in the literature, exploiting its reliability, predictive power, and 
ease of implementation. Any such model should contain, in addition to a 
basic corresponding-states function, terms which account for molecular 
size, deviation from spherical shape, dipole moments, chemical association, 
and quantum effects. In this work we neglect the last two effects because we 
concentrate on molecules and conditions for which they are unimportant. 

The present correlation for the second virial coefficient is based on the 
work of Pitzer and Curl [3]  for nonpolar molecules. Their correlation was 
updated and applied to polar molecules by Tsonopoulos [4].  Here we take 
advantage of the plethora of new data on the haloalkanes, chlorofluoro- 
carbons, hydrochlorofluorocarbons, and hydrofluorocarbons (CFCs, 
HCFCs, and HFCs) to make further improvements to the correlation and 
to apply it to this class of molecules. These data are some of the best and 
most comprehensive in the literature. We show that, contrary to previous 
published results, the virial coefficients have a form that is compatible with 
the Stockmayer potential. For the third virial coefficient, our correlation is 
an adaptation of the model of Van Nhu et al. [5]. It agrees very well with 
the best third virial coefficient data and it has very good predictive power. 
We apply these models to both pure fluids and binary mixtures. The 
refrigerants, CFCs, HCFCs, and HFCs, from an ideal subject group for 
this study since they span a wide range of polarities but they do not 
associate chemically. We also make a limited number of comparisons for 
other classes of fluids. 
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2. S E C O N D  VIRIAL C O E F F I C I E N T  

2.1. Pure Fluids 

The correlation of Pfizer and Curl I-3] for the second virial coefficient, 
published in 1957, has been used extensively with great success, and it is 
the basis for several later correlations. It gives an expression for B, 

BPffRT~ = .f'"'(Pc Tr) + " ) f ~ ( T r )  ( l )  

where Pc and T¢ are the critical pressure and temperature, R is the universal 
gas constant, and (o is the Pitzer acentric factor. The f ' s  are polynomials 
in inverse powers of Tr = TITs. They were claimed to be universal func- 
tions, applicable to all molecules, and that claim has generally been 

t-[o) substantiated. The first t e rm, . ,  PC, was found by fitting data for small 
spherical molecules such as the noble gases. Then the second term was 
found from data for larger, nonspherical molecules, i.e., molecules with 
large acentric factors. Pitzer and Curl made no explicit provision for polar 
molecules. 

In 1974, Tsonopoulos [4] ,  using newer and more extensive data, 
improved the polynomials of Pitzer and Curl. His functions were 

f~o)= 0.1445 - 0.330/Tr - 0.1385/T~ - 0.012 I/T~ (2a) . !  T 

.f~-t ' = 0.0637 + 0.331/T~ - 0.423/T; ~ - 0.008/T~ (2b) 

These functions improved the agreement with data for B, especially at 
reduced temperatures, below 0.75. This correlation has been used with 
considerable success. For example, Bich et al. found that for benzene 
(co = 0.211) [6]  and for n-hexane (0)=0.299) [7],  the calculated values of 
B agreed with the best experimental results to within about 1% for 
temperatures almost down to the normal boiling point. 

Tsonopoulos also added a third term to Eq. (1) to account for the 
behavior of polar molecules. This term has the form 

fl'-~(T,) = a/T 6 (3) 

and it is most important at reduced temperatures less than unity. The 
parameter a is written as a function of the reduced dipole moment,  /~R, and 
it is expected always to be negative to account for the fact that B for polar 
molecules is more negative than B for corresponding nonpolar molecules. 
The reduced dipole moment can be defined in several different ways. We 
follow Tsonopoulos in using the definition 

#R = IO-II-P¢/T?. (4) 
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where l~ is the dipole moment in Debye, T c is in kelvins, and Pc, by 
convention, is in atmospheres (1 a t m =  101,325 Pa). For the small polar 
molecules of interest here, 0 < PR < 250. Tsonopoulos used a relation of the 
form 

a=all la +a2pSR (5) 

to fit the second virial coefficient data for several ketones, ethers, acetal- 
dehyde, and acetonitrile. However, he emphasized that a is not expected 
to be a universal function, capable o f  fitting all classes of molecules, 
because the intermolecular potential is affected by the dipole's direction 
and location within the molecule, in addition to its magnitude. 

In a later publication, Tsonopoulos 1-8] applied the above relations to 
the data available at that time for the haloalkanes. For this he used a func- 
tion of the form, a=a~l~ 4. Surprisingly, for some of the less polar fluids, 
with l t a<  75, the data were better fit with a equal to zero, or even slightly 
positive. This situation is considered to be unacceptable. O'Conneii and 
Prausnitz I-9] found a similar effect when fitting a wide variety of organic 
molecules. 

It is generally agreed that the spurious behavior (positive value of a) 
arises from the fact that the measured acentric factor is also affected by 
the presence of the dipole moment, causing an overcorrection when calcul- 
ating B. One remedy which has been tried is the substitution of oJ H, the 
acentric factor of the homomorph, for ¢o. A homomorph is a nonpolar 
molecule with the same size and shape as the molecule of interest; e.g., the 
homomorph of fluoromethane would be ethane. This scheme has been used 
with mixed results. It has the disadvantage of requiring the parameters for 
more molecules, the homomorphs. An example of interest here is the 
homomorph of l,l-dichloro-2,2,2-trifluoroethane (R123), which would be 
2,2,3-trimethylbutane. One could carry this line of reasoning further and 
argue in favor of using the critical parameters of the homomorphs as well. 
The difficulties become obvious. For these reasons we have decided against 
using homomorphs and seek another solution to this problem. 

One result of the search for substitutes for the ozone-destroying CFC 
refrigerants has been the production of new sets of high-quality PVT data 
for the halogen-substituted methanes and ethanes. The sources of some of 
these new data are given in Table I. The molecules range in polarity from 
RI4 (PR = 0 )  to R41 ( p a =  186). We also include in Table I references to 
some older published data which are summarized by Dymond and Smith 
[10]. When these data were compared with Eqs. ( ! ) - (3)  we found almost 
exactly the same curve for a that was found by Tsonoupolos (Fig. 3 of 
Ref. 8), namely, a =  a~p~. Data for some of the less polar fluids were best 
fit by a small positive value for a, as found earlier. 
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Table I. Pure Fluid Parameters and References 
Some Refrigerants {Most Dipole Moments  Were 

for the Virial Coefficients of 
Taken from Refs. 37 and 38) 
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T+ P+ h v~ Ref. 
Fluid (K) (bar)" II. to (10~L-mol ') (10~L.mol ') No.(s) 

RI2 384.95 41.25 8.5 0.186 76.6 217 27, 28 
RI34a 374.25 40.55 122 0.323 72.1 201 13, 22 
RI3 301.9 38.85 10 0.263 71.3 198 10 
R22 369.3 50.54 78 0.218 58.6 169 27. 28 
R23 299.0 48.16 142 0.264 48.1 133 10, 29 
R32 351.36 57.93 182 0.277 45.4 123 23, 29 
RII5 353.1 31.53 6.7 0.256 92.1 252 10 
RI23 456.9 36.62 32 0.282 98.3 278 32, 33 
R 124 395.4 36.18 49.5 0.289 86.4 246 24 
R125 339.4 36.29 75.7 0.304 73.7 210 30, 31 
Rl41b 477.3 42.5 74 0.225 91.1 253 34, 36 
R142b 410.3 40.41 109 0.254 83.2 231 2, 10 
R143a 346.3 37.87 171 0.260 69.8 194 31 
R152a 386.4 45.17 152 0.275 65.8 181 13, 31 
RI4 227.5 37.45 0 0.180 48.7 141 10, 29 
R114 418.9 32.48 8.6 0.254 106 294 2, 10 
R41 317.42 58.75 186 0.197 39.2 109 29, 35 
RII 471.2 44.67 4.0 0.185 88.9 247 10 

" I bar- -  100 kPa. 

The Stockmayer potential, 

, 0  2, q~) (6) 

was designed to represent the intermolecular potential for polar fluids. 
Here tr is the value of r at which the potential energy is zero, and e is the 
well depth. This potential leads to a second virial coefficient of the form 
[1, 11] 

B(T) = b {~, (T) + ~_,(T)/~ + ~3(T)/~4 + ... } (7) 

where b is the hard sphere volume. Guided by Eq. (7), we looked for a 
representation for B(T) containing a term proportional t o / ~ .  Because the 
second term in Eq. (l), containing oo, is assumed to cause the problem, we 
sought a solution by modifying f<~J in Eq. (2b). We found that deleting 
the last term in Eq. (2b) produced a function for B(T) with the proper 
behavior. 
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The result is shown in Fig. l, where we see that the best available data 
can be represented with the function 

a = - 9  x 10 711R (8 I 

All of the new data on the more polar molecules are well represented by 
this modified function for B. For  R12, data extend down to a reduced tem- 
perature of 0.6, but even at that low temperature the polar term amounts  
to only l cm 3 .mol  t, which is less than the experimental uncertainty. 
Therefore the agreement for RI2  shown in Fig. 1 is somewhat  fortuitous. 
Nevertheless, the data support  a polar term which is proport ional  to I~R' 

Figure 2 shows the data for R I52a (1,1-difluoroethane). Here we can 
see the effect of the changes made. The two curves labeled "'nonpolar'" show 
the effect of eliminating the last term in Eq. (2b). Tsonopoulos  [8-] stated 
that the second virial coefficient of R152a could be represented with the 
nonpolar  terms only, Eqs. (2), even though fIR = 152. That  conclusion was 
based on the older data of Mears et al. [12] .  Figure 2 shows that the new, 
very high-quality data of Baehr and Tillner-Roth [13]  justify the inclusion 
of the polar term, and they are well represented by the present formulation. 

Figures 3a-c  illustrate how the present model represents recent second 
virial coefficient data for 15 halogen-substituted methanes and ethanes. 
Table I gives the values of the parameters used in the calculations, in the 
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figures, only one symbol is used for all of the data for each fluid, for clarity. 
The sources of the data are given in Table I. The agreement between the 
model and the data is generally comparable to the agreement between the 
different sets of data. The notable exceptions are RI23 and Rl41b. In 
the case of Rl41b, the calculated values of B(T) are more negative by 
approximately 5% . A possible explanation is the fact that Rl41b has a 
tendency to decompose in the presence of metals, and this created some 
experimental difficulties for both the PVT and the acoustic measurements 
shown. Because of this problem we neglected the third virial coefficient, C, 
in the analysis of the data, and as a result, the experimental values of the 
second virial coefficient would tend to be a little too positive. For R123 
the agreement is good at reduced temperatures above 0.9; with decreasing 
temperature the calculated values become less negative than the data, and 
the difference increases to 7 % at a Tr of 0.57. We have no explanation for 
this difference. The agreement between the model and the data for the 
other fluids is of the order of 1% of B(T). 

2.2. Binary Mixtures 

The model can be readily extended to binary mixtures with the 
assumption that the interaction virial coefficient, B., ,  has the same corre- 
sponding-states temperature dependence as the pure-component coefficients, 

x41) 153-6 
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i.e., Eqs.(1)-(3). Mixing  rules are necessary for the substance-speci f ic  
parameters ,  and  we employ  the c o m m o n l y  used fo rmula t ions ,  

T~=:=(T~jT~.~) 12 I - k l ~ )  

.~,: = ½(.J~ + <o:) 
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Fig. 3. Comparison of second virial data for 
Ihe refrigerants with values calculated from 
Eqs. ( l )-(3) and (8). See Tablel for data 
references. 
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Pcl. 4TcI2(P~,r~j/T~, + P`:2v~e/T~2) 
- ~z ' 3  r ' 3 ) ~  ( 9 c )  

- ~ ~ci "{- ,:2 

I O~Itl ,tt 2 PcJ2 (9d) 
t l R i  2 = T~t2 

Equation (9d) has the property that mixtures of polar and nonpolar gases 
are treated as nonpolar, in keeping with the idea that induced dipole 
moments have only a relatively small effect. 

Only one additional parameter is needed, the binary interaction 
parameter k,. This parameter is usually determined by one of four methods: 
(i) from mixture virial coefficient data with Eqs. (9a)-(9d) above, (ii) from 
the analysis of vapor-liquid equilibrium data with a simple equation 
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Fig. 4. Comparison of the model with data for the cross 
second virial coefficients for four binary mixtures contain- 
ing R22. The binary interaction parameter, kp, was taken 
from other sources: (a) using bubble curve pressures and 
orthobaric liquid densities: (b) using the fit of a cubic 
equation of state to VLE data. 
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of state (such as Peng-Robinson, Carnahan-Star l ing-De Santis, etc.), 
(iii) from an analysis of bubble-pressure curves and liquid-phase composi- 
tions, or (iv) from an empirical correlation such as that given by Morrison 
and McLinden [ 14]. For the molecules of interest here, these methods are 
reasonably consistent and give approximately the same values for ki~ for 
many systems. As an example, we show in Figs. 4a and b comparisons of 
the model with some recent data from Schramm and Weber [2]  for Bj_, for 
the binary systems R22 plus RI2, RI42b, Rl14, and R152a. The curves 
were calculated with Eqs. (2a) and (2b) (without the term in T r ~), Eq, (3), 
and Eq. (8). In Fig. 4a the interaction parameters were derived from 
bubble-pressure curve-composit ion data, while in Fig. 4b k~, came from 
an analysis of vapor-liquid equilibrium (VLE) data. The agreement is 
reasonably good, although it can be seen that in two of the four cases it 
could be improved somewhat by optimizing the interaction parameter to fit 
the virial coefficient data. In Fig. 4b the average absolute deviation is 
22 cm 3. mol t (3%),  whereas the experimental uncertainty estimates given 
by the authors vary from 5 to 15 cm ~.mol J. Figure 5 shows a comparison 
of the present model with the Burnett data of Lange and Stein [15] for 
the system R I 4 + R 2 3 ,  a polar-nonpolar  system. Here the interaction 
parameter has been fitted to the B~2 data, and the resulting value, 0.11, is 
very close to that found from VLE data, 0.117. This single value for k~2 
suffices quite well over a wide temperature range. The average absolute 
deviation for B~,_ is 1.2 cm 3 • mol ~, compared with an experimental uncer- 
tainty of 1.0-1.8 cm ~ • mol 
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Fig. 5. Comparison of the model with virial coefficient 
data from Ref. 15 for R14 + R23, with kl ,  found from BI,. 
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For some other systems, however, values of k~  found from mixture 
virial coefficients do not agree with those found from VLE data. Morrison 
and McLinden [14] give a more complete discussion of this parameter in 
systems of mixed refrigerants. Perhaps the greatest advantage of the present 
correlation for mixtures is the fact that one reliable datum at a convenient 
temperature will suffice to determine k~_,. We may then extrapolate the 
calculated Bj_, to lower, more inacessible temperatures, with confidence. 
Calculations for multicomponent mixtures follow in a straightforward way. 

3. T H I R D  VIRIAL C O E F F I C I E N T  

3.1. Pure Fluids 

In contrast to the situation with light gases such as argon and 
nitrogen, the third virial coefficients of the polar refrigerants make signifi- 
cant contributions to the density, and they must be taken into account 
even at moderate pressures. For example, R134a at Tr =0.9 (336 K) and at 
a density of 1 m o l . k  ~ (0.2p~.), has a pressure of 19 bar, and the third 
virial coefficient makes a 4.7 % contribution to the density. As the pressure 
is reduced to 4.7 bar this contribution decreases to 0.1%, the approximate 
level of accuracy of modern PVT data. At the density of the saturated 
vapor, C should be included down to a reduced temperature of about 0.75. 

Rowlinson [16] calculated the third virial coefficient of polar 
molecules from the Stockmayer potential, assuming pairwise additivity. 
Whereas the second virial coefficient is larger and more negative than that 
of a corresponding nonpolar molecule, the third virial coefficient is larger 
and more positive. Hirschfelder et al. [11] showed that the third virial 
coefficient is a strong function of the reduced dipole moment. Others have 
calculated the third virial coefficient using various intermolecular poten- 
tials, and attempts have been made to include the effects of nonadditivity. 
These efforts have had some success for simple molecules such as argon. 
However, the calculations are quite complicated, and the intermolecular 
potentials are not sufficiently well-known for more complex molecules. 

For this reason the alternative of a corresponding-states correlation is 
a/tractive. In the past such efforts have been hampered by a paucity of 
reliable data for both pure fluids and mixtures. Chueh and Prausnitz [17] 
presented a correlation of C/v~ for some nonpolar fluids in terms of Tr and 
a third parameter, d. A simple two-parameter corresponding-states function 
worked well for Tr > 1.5. However, they were unable to predict values 
for the parameter d, which was necessary to extend their correlation to 
lower temperatures. De Santis and Grande [18] used a similar approach 
and defined d =  oJ~N/h, where ct is the molecular polarizability, and N is 
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Avogadro's constant. They reproduced the experimental third virial coef- 
ficients of some nonpolar fluids and their mixtures quite successfully. 
Orbey and Vera [ 19] correlated the function C(PJRT~)  2, analogous to the 
representation of Pitzer and Curl for B, as a function of T r and to for 
nonpolar fluids. Their results were comparable with those of De Santis and 
Grande, and their function was somewhat simpler and did not require 
values for ~. 

Kohler and co-workers [5, 20] have produced models for both the 
second and the third virial coefficients of polar molecules as functions of 
reduced temperature and the dipole moment based on descriptions of 
molecules as hard convex bodies. They offer a semitheoretical argument 
that the third virial coefficient can be linked to the second virial coefficient 
via the quantity ( C - C h J / ( B - B h )  2, where Ch and B h are the virial coef- 
ficients of the corresponding hard convex body molecule. We adopt 
Kohler's ideas here, with some simplification and a different functional 
form. 

For hard body molecules we decided for simplicity to ignore non- 
sphericity parameters and assume that we have simple hard spheres. Then 
Bh = h, the hard sphere volume, and Ch = 0.625b-'. For values of h for the 
refrigerants, we used those resulting from the fit of the CSD hard sphere 
equation of state of Gallagher et al. [-21] to the available data. They 
treated h as a soft sphere and allowed it to vary as a quadratic function of 
temperature. We took the values calculated at the critical temperatures for 
each fluid. Very similar results are obtained by simply letting h ~ 0.36t,c. 

We used a functional form for C similar to that used by Orbey and 
Vera 1-19] and by Van Nhu et al. [5],  

C =  Ch + (B--  Bh)-" ~c,SV(Tr) (10) 

where ~¢ is a scaling factor at the critical temperature (near the maximum 
in C) and .~V(Trl is a simple temperature function which is equal to unity 
at T¢. In accordance with the calculations of Rowlinson and others, we let 

~ =  ,, + ,_,l~ II1) 

to incorporate the dependence on the dipole moment. The parameters, 
,.t =0.17 and ,-2= 1.85x 10 ~ were determined from the data for several 
refrigerants, with heavy weight given to the data for R134a [13, 22], R32 
[23], and R124 [24]. With these parameters, for R32 (/-~R = 182), C(T~)is 
a factor of 1.66 greater than that for the corresponding nonpolar molecule. 
For the temperature dependence we used 

.~(Tr) = (6 + l l - ( 6 ) / T ~  (12) 
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and we found that the data are better represented if we let ~6 be a weak 
function of /~R, c6= "3 + c4,113, with "3 = 1.584 and ,'4 = -4 .9  x 10 s. This 
extra degree of freedom allows the location of the maximum in C to be a 
function of I~R. 

Equation (10) contains an implicit dependence on ,) through the 
second virial coefficient, B. In fact, for nonpolar fluids at the critical 
temperature, Eq. (10) has essentially the same dependence on co that was 
shown by Orbey and Vera [19]. There is no explicit dependence on the 
polarizability, cc 

For our purposes, Eq.(10) has another very important property. 
When a low-order virial-type function is fit to P V T  data the uncertainty in 
the individual coefficients, B and C, is offset to a large extent by the fact 
that they are correlated, and if the fit has been done properly, the combina- 
tion will reproduce the original P V T  surface within the experimental error. 
When B and C are estimated independently, this correlation is lost, and the 
combination may not reproduce the PVTsur face  with the desired accuracy. 
Equation (10) preserves some of this correlation, and a shortcoming in our 
estimate for B will be partially compensated by a corresponding offset with 
the opposite sign for C. This effect is illustrated below. 

Figure 6 shows .T(Tr) for several fluids of interest. The weak dependence 
on I~R can be seen there. The lower precision at higher temperatures has a 
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Fig. 6. The function .~(Tr) in Eq.(12) for several 
refrigerants, showing its variation with l~k: ( I )  R123: ((?) 
RI34a; (*) R22; { + ) R I 4 ;  (.&) R32; (O) R41; (x )  RI52a; 
( ) ,it R =0; ( . . . .  ) i lK= 1 8 2 .  
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minimal effect on the calculated values of C. Figures 7a and b compare the 
model with the third virial coefficient data for a variety of refrigerants. 
For T greater than the temperature of the maximum in C the agreement is 
very good; around the maximum there is some disagreement, but also some 
imprecision in the data. At lower temperatures, both the curves and the 
data are somewhat uncertain. The maximum moves to lower reduced tem- 
peratures with increasing reduced dipole moment. The magnitude of the 
reduced maximum, C ( P J R T c )  2 or C/t,~., for the most polar molecules, 
R32 and R41, is almost twice that for a corresponding nonpolar molecule. 
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Fig. 7. Comparison of calculated values of third virial 
coefficients, using Eqs. (10)-112) with data for several 
refrigerants. 
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Again, the only noteworthy discrepancy occurs for R!23, where the devia- 
tions in C are opposite in sign from those for B. This leads to some can- 
cellation of errors when calculating densities. Table I provides the necessary 
parameters for calculating a predicted curve when no reliable data are 
available. 

3.2. Binary Mixtures  

For treating mixtures, no parameters are required beyond those 
already available, We merely need to devise a mixing rule for I~R and decide 
on a formalism for handling Ch and the B's in Eq. (10). We define 

~.lR. i 12 = (~.lR. i ~/R. 12 ) 1'3 (13a) 

PR. 122 = ( l l R . 2 1 ~ L I 2 )  j ~ (13b)  

Bh. 12 ---- (Bh. I -t- B, . ._ ) /2  (13c)  

C, .  ,,2 = 0.625(B~. ,  + 2B~. ,2)/3 (13d)  

C, .  12., = 0.625(B-' h.2 + 2BL 12)/3 (13e) 

and in Eq. (10) we make the substitution, 

( B , -  Bh.ii) 2 "* [ ( B , -  Bh.ii)( B 0 - Bh.0)2] 2 3 (13f) 

where all of the terms on the right side have been defined. 
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Fig. 8. Comparison of the calculated pure and cross third 
virial coefficients for the system CO_,+C,H~, with data 
from Refs. 39 and 40. 
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Fig. 9. Compar ison  o f  the calculated pure and cross-third 

virial coefficients for the system RI4 + R23 with data from 
Ref. 15: filled symbols, pure fluid virials: open symbols. 

cross virials. 

Third virial coefficient data and cross third virial coefficient data for 
mixtures are extremely scarce in the literature. Among the best data 
reported are those for the nonpolar system CO2 + C2 H6 [39, 40]. Figure 8 
compares the present correlation with the data at two temperatures. The 
agreement is excellent, considering the difficulty of the measurements; thus, 
we have confidence in the extrapolation of the curves. Figure 9 compares 
the results for the system R I 4 +  R23 [15], a polar-nonpolar system, with 
the model. Here again the agreement is also very good, except for some 
disagreement for Ct~2. For another system, R I 4 + S F  6 I25], not shown 
here, the agreement is also reasonably good, although the data have a 
lower accuracy. The model treats all these three cases as nonpolar systems 
since /~Rt ~2 = IlR~22 = 0 [see Eqs. (13a) and ( 13b)]; thus these examples do 
not test the mixing rule for /tR,,,. This test must await new experimental 
results. 

4. DISCUSSION 

In the foregoing sections we have modified previous correlations for the 
second and third virial coefficients of polar molecules, and we have made 
specific applications to the halogen-substituted methanes and ethanes. The 
simple mathematical forms, Eq. (12) in particular, are very successful in 
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reproducing the best available data without overfitting experimental 
imprecision. Extension to mixtures requires only one additional parameter, 
the binary interaction parameter. We have found that interaction param- 
eters derived from other types of measurements work reasonably well for 
calculating B~2 in many cases, but not in general. Where these binary 
interaction parameters are not known, they can be obtained from one data 
point, or from one Burnett isotherm, or possibly from a prediction scheme. 
Then, using the parameters in Table I, one can calculate the properties for 
any mixture at any temperature with acceptable accuracy. The built-in 
correlation between B and C tends to compensate for small inaccuracies in 
the estimations. The overall success indicates that we have incorporated 
into our functions the most important properties affecting the behavior of 
the virial coefficients. Small discrepancies seen near the maxima in C for 
some molecules indicate that some improvement might be obtained by 
using a more complex function instead of Eq. (12). 

It is interesting to compare the model with data for other classes of 
fluids. The second virial coefficient data for argon are of course reproduced 
very well, because these data were important in the original determination 
of.fro( The third viriai coefficient for argon is also reproduced well, with 
maximum deviations being 2.5x 10 4 ( L . m o l  ')-" near the critical tem- 
perature. This would lead to a density error of 0.1% at a pressure of 
25 bar. The second virial coefficient of helium is not fit particularly well at 
room temperature (Tr = 57), even if we use the pseudo-critical parameters; 
AB=0.003 L .mol  ~ (30%). Helium data were not used in the original 
determination of Eq. (2), and small adjustments probably could be made 
without upsetting the fits for other fluids. The third virial coefficient for 
helium is reproduced very well. For S F  6, B and C are calculated to within 
0 .002L.mol  ~ and (7 -15)x10  4 ( L . m o l  ~)-', respectively. The virial 
coefficients of the light hydrocarbons, methane, ethane, and propane, are 
reproduced very well, as are those of carbon dioxide. 

We could not expect the model to predict the behavior of water very 
well because it does not incorporate the effect of association in the vapor 
phase. This effect manifests itself primarily in the behavior of the third 
virial coefficient, which takes on very small positive values for Tr > 0.9 but 
becomes very negative at lower temperatures. The maximum positive value 
is CImaxJ/v~=0.3, which may be contrasted with values for (nonpolar) 
nitrogen and for (polar) R32 of 0.45 and 1.8, respectively. Our model does 
not follow this behavior quantitatively. The results are better than expected, 
however. Over the range 400-723 K the predicted B is more negative than 
the best experimental data by about 0.01 L-mol  ~, increasing to about 
0.02 L.  moi - ~ near 400 K. The effect of this offset is partially compensated 
for by a calculated C which is more positive than the experimental values. 



478 Weber 

The result is that the densities of saturated water vapor at 423 and at 
498 K are predicted with an accuracy of 0.35 and 0.02 %, respectively; this 
is about as good as the agreement among the best data sets. 

Methanol is less polar than water, but it forms hydrogen bonds to a 
much greater extent in the vapor phase. Our model for B agrees with the 
recommended data to within 0.015-0.025 L.  mol ' at temperatures above 
400 K, where the experimental uncertainty is +0.015 L.  mol ', but it does 
not reproduce its steep descent below that temperature. Tsonopoulos used 
an additional term, of the form fiTS,, in Eq. (3), which successfully 
accounted for association. With our representation we would need a term 
of the order of T r- ,2 or an exponential, to reproduce the data. Others have 
used a chemical model to describe this behavior, 

Ammonia associates to a lesser extent than water. Our calculated second 
virial coefficient is slightly less negative than the experimental values. Haar  
and Gallagher [26] found similar deviations from their thermodynamic 
surface, which they ascribed to possible adsorption effects in the measure- 
ments. As a result we estimate errors no larger than 0.01 L - tool ' in B. We 
found no data for the third virial coefficient of ammonia,  but the shape of 
our calculated curve looks similar to that for water. This fact plus the 
expectation of some association leads us to assume that the calculated 
curve is somewhat too positive. The model should be relatively accurate for 
calculations at pressures less than about 15 bar. 

The most polar small molecule is acetonitrile (t~R =245k  and it forms 
a good test of the model because it does not associate. It has very large 
virial coefficients: B(Tr=O.6)/t,~= -23 ,  compared to a value of - 7 . 3  for 
R32. At Tr=0.9,  C/t,~=8.3, compared to 1.8 for R32. As Tr decreases to 
0.78, the calculated C is still increasing to a value of C/t,~ = 33, whereas 
most third virial coefficients become negative at about this temperature. 
There are several sets of second virial coefficient data for acetonitrile, all 
of which agree reasonably well. Our model does not follow the strong 
negative behavior of the data. Differences range from 20% at 450 K to 
almost a factor of two at 300 K. A possible explanation and a remedy may 
be found in Eq. 17), where we have used only the first two terms of an 
expansion. In the case of acetonitrile the polarity effects may be so strong 
at these relatively low reduced temperatures that we should include the 
next term, proportional to I~ .  We have made some preliminary efforts in 
that direction, and a two-term function for a can be found which fits the 
data for both acetonitrile and the refrigerants reasonably well. It is 
interesting to note that if we use the correct values of B for acetonitrile, 
Eq. ( 101 predicts C within the experimental uncertainty of recent data sets. 
At this polarity, however, Eq.(10) does not exhibit a maximum but 
increases indefinitely at lower temperatures. This behavior may, or may 
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not, be physically correct, but the consequences are negligible. At the 
normal boiling point, 354 K, the predicted C contributes only 0.2 % to the 
vapor density. 

5. C O N C L U D I N G  R E M A R K S  

We have presented a physically based, semiempirical scheme for 
estimating the second and third virial coefficients, which is consistent with 
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the polarity dependence specified by the Stockmayer potential. This scheme 
provides reliable results for the halogenated hydrocarbons and it can be 
extended to some other classes of molecules. 

Good-quality P V T  measurements in the gas phase have an experimen- 
tal accuracy of about 0.1%, or a little better, in density. Corresponding 
states-type correlations, including the present one, do not normally achieve 
this accuracy. However, we can make some generalized estimates concern- 
ing accuracy, and we can give some examples to support these estimates. 

We have seen that polar fluids have much larger second and third 
virial coefficients than corresponding nonpolar fluids. We assume that this 
situation is also true for the higher-order virials, which we have neglected. 
Therefore, we should be somewhat cautious about the maximum density at 
which we use this representation. Experience has shown us that for light, 
nonpolar gases, such as oxygen and nitrogen, B and C provide a very good 
fit to precise P V T  data for densities up to about 0.5p,. For the polar 
molecules of interest here, this maximum density decreases to about 0.25pc. 
To be a little more conservative, we limit our comparisons to densities 
~< lmo l .L -~  [equivalent to (0.12~3.25)pc for most refrigerants], which 
includes most of the pressure range of interest to the refrigeration industry. 

For the refrigerants and nonpolar fluids the present model calculates 
the gas-phase nonideality with an uncertainty of about 2 %. Therefore, at 
the critical temperature and a density of l m o l . L  ~ (~21 bar) we can 
expect an accuracy in density of about 0.50%. At a lower temperature, 
for example, Tr = 0.78, the vapor pressure may be only about 5 bar, and 
the maximum density is about 0.25 mol.  L - t .  Under these conditions 
the accuracy of the computed density should be approximately 0.1%. We 
test these estimates with three examples taken from our own data, in 
Figs. 10a-c. We see that for R32, R134a, and RI23 the comparisons are 
consistent with our estimates. In the case of RI23, the estimated densities 
are quite good, even though the individual estimated virial coefficients did 
not agree well with the ones resulting from the fit to the data. 

NOMENC LATURE 

B 
Bt_, 
Bh 
~i(T)  
C 
Cj ~_,, Cl_-_ 
Ch 
N 

Second virial coefficient 
Mixture cross second virial 
Second virial of a hard sphere fluid 
Temperature function, second virial, Eq. (7) 
Third virial coefficient 
Mixture cross third virials 
Third virial of a hard sphere fluid 
Avogadro's number 
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Pc  

Pcl2 
T~ 
T,.:I 2 

:rr 
a 

b 

f (il 

k l2  

ItR 

~lR12 

~/R112, ~1RI22 
(3) 

O.)12 
~0(r) 

P~ 

Critical pressure 
Characteristic critical pressure of a binary mixture 
Critical temperature 
Characteristic critical temperature of a binary mixture 
Reduced temperature,  T/T~ 

Parameter  measuring polar contr ibut ion to B, Eq. (3) 
Volume of a hard sphere molecule 
Polynomials  determining temperature dependence of the 

nonpola r  part of B 
Binary interact ion parameter  for mixtures, Eq. (9a) 
Critical volume 
Molecular  polarizability 
Dipole moment  
Reduced dipole moment ,  Eq. (4) 
Mixture reduced dipole moment ,  second virial 
Mixture reduced dipole moment ,  third virial 
Pitzer acentric factor 
Mixture acentric factor 
Intermolecular  potential  
Critical density (l/v~) 
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